Asymptotic Analysis of Random Matrices with External Source and a Family of Algebraic Curves
نویسنده
چکیده
We present a set of conditions which, if satisfied, provide for a complete asymptotic analysis of random matrices with source term containing two distinct eigenvalues. These conditions are shown to be equivalent to the existence of a particular algebraic curve. For the case of a quartic external field, the curve in question is proven to exist, yielding precise asymptotic information about the limiting mean density of eigenvalues, as well as bulk and edge universality.
منابع مشابه
Random hermitian matrices in an external field
In this article, a model of random hermitian matrices is considered, in which the measure exp(−S) contains a general U(N)-invariant potential and an external source term: S = N tr(V (M) + MA). The generalization of known determinant formulae leads to compact expressions for the correlation functions of the energy levels. These expressions, exact at finite N , are potentially useful for asymptot...
متن کاملAsymptotic Analysis of Binary Gas Mixture Separation by Nanometric Tubular Ceramic Membranes: Cocurrent and Countercurrent Flow Patterns
Analytical gas-permeation models for predicting the separation process across membranes (exit compositions and area requirement) constitutes an important and necessary step in understanding the overall performance of membrane modules. But, the exact (numerical) solution methods suffer from the complexity of the solution. Therefore, solutions of nonlinear ordinary differential equations th...
متن کاملA numerical Algorithm Based on Chebyshev Polynomials for Solving some Inverse Source Problems
In this paper, two inverse problems of determining an unknown source term in a parabolic equation are considered. First, the unknown source term is estimated in the form of a combination of Chebyshev functions. Then, a numerical algorithm based on Chebyshev polynomials is presented for obtaining the solution of the problem. For solving the problem, the operational matrices of int...
متن کاملON SELBERG-TYPE SQUARE MATRICES INTEGRALS
In this paper we consider Selberg-type square matrices integrals with focus on Kummer-beta types I & II integrals. For generality of the results for real normed division algebras, the generalized matrix variate Kummer-beta types I & II are defined under the abstract algebra. Then Selberg-type integrals are calculated under orthogonal transformations.
متن کاملOn the asymptotic distribution of singular values of products of large rectangular random matrices
We consider products of independent large random rectangular matrices with independent entries. The limit distribution of the expected empirical distribution of singular values of such products is computed. The distribution function is described by its Stieltjes transform, which satisfies some algebraic equation. In the particular case of square matrices we get a well-known distribution which m...
متن کامل